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Abstract. Support Vector Machines constitute a Machine Learning technique originally designed for the solution of 2-class
problems. For multiclass applications, several strategies divide the original problem into a set of binary subtasks, whose results
are combined. This work introduces the use of Genetic Algorithms to determine binary decompositions of multiclass problems.
Experimental results on benchmark and Bioinformatics multiclass datasets indicate the potential of the proposed approach, which

is able to produce good multiclass solutions with the use of simple decompositions.
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1. Introduction

Multiclass classification by Machine Learning (ML)
techniques consists of inducing a function f(x) from
a dataset composed of pairs (x;,y;), where y; €
{1,...,k} and k > 2. Some popular learning tech-
niques are originally binary, being able to carry out
classifications only when k¥ = 2. Among these tech-
niques, one can mention Support Vector Machines
(SVMs) [11].

In order to generalize SVMs to multiclass problems,
several strategies have been proposed. A standard strat-
egy is the one-against-all (OAA) approach, where k bi-
nary classifiers are induced. Each classifier is respon-
sible to separate a class ¢ from the remaining class-
es [11]. Other common extension is known as one-
against-one (OAQ). In this approach, given a prob-
lem with k classes, k(k — 1)/2 classifiers are induced.
Each induced classifier distinguishes a pair of classes
(4,7) [17]. Dietterich and Bariki [16] suggested the use
of error-correcting output codes (ECOC) to represent
each class in a multiclass problem. In this approach,
binary classifiers are trained to learn the binary values
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in the codes. In [7], Allwein et al. proposed a frame-
work that unifies the previous decomposition strategies
as code based approaches.

In practice, none of the previously mentioned tech-
niques can be considered the best for every multiclass
problem. Although most of the current works adopt the
OAA method, there are scenarios where other decom-
positions of the multiclass problem can provide better
results (see, for example, [7,16]). Based on this ob-
servation, the present work introduces the use of Ge-
netic Algorithms (GAs) [10], a search technique based
on principles of genetics and natural evolution, to de-
termine binary classifiers combinations according to
their joint performance in the multiclass solution. The
introduced strategy is evaluated using benchmark and
Bioinformatics datasets. Initial experiments with a pre-
vious version of this algorithm in a protein structural
classification dataset have already shown promising re-
sults [1], indicating that basic decomposition solutions
of multiclass problems could be improved by consid-
ering their performance on the problem solution.

This paper is structured as follows: Section 2 presents
the materials and methods employed in this work. Sec-
tion 3 describes the experimental results. Section 4
discusses the results obtained and Section 5 concludes
this paper.
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2. Materials and methods

This section introduces the SVMs and describes
some multiclass strategies reported in the literature. It
also presents the algorithm that implement the strate-
gy proposed in this work and the datasets used in the
experiments.

2.1. Support vector machines

Support Vector Machines (SVMs) constitute a lear-
ning technique based on the Statistical Learning The-
ory [11]. Given a dataset with n instances (X;,y;),
where each x; € ™ is an instance and y; € {—1,+1}
corresponds to x;’s label, this technique looks for an
hyperplane (w - x + b = 0) able to separate data with a
maximal margin. In order to perform this task, it solves
the following optimization problem:

n
Minimize :||w||* + C Z&
i=1
§& =0

Restrictedto : {yz Wexi+b)>1—6

where C' is a constant that imposes a tradeoff between
training error and generalization and each &; is a slack
variable. These variables relax the restrictions imposed
to the optimization problem, allowing a set of patterns
to be within the margins and the presence of some
training errors. The decision frontier obtained is given
by Eq. (1).

Fx)=> yiaixi-x+b 1)
=1

where the constants «; are named Lagrange multipliers
and are determined in the optimization process.

When a non-linear separation of the dataset is need-
ed, a mapping procedure is applied to its examples. In
the new high-dimensional space, also named feature
space, the dataset can be separated by a linear SVM
with a low training error. This mapping process is per-
formed with the use of Kernel functions, which com-
pute dot products between any pair of patterns in the
feature space. Therefore, the only modification nec-
essary to deal with non-linearity in the dataset is to
substitute any dot product among patterns by a Kernel
function. The Kernel function used in this work was
the Gaussian function, illustrated in Eq. (2).

K (x:,%;) = exp (—o % = x;]*) @

2.2. Multiclass strategies

SVMs were originally formulated for the solution of
problems with two classes (41 and —1, respectively).
In order to extend them to multiclass problems, several
strategies have been proposed.

The most straightforward strategy is the one-against-
all (OAA) decomposition. Given a problem with %k
classes, k binary classifiers are generated. Each clas-
sifier is responsible to distinguish a class ¢ from the
remaining classes. The final prediction is usually given
by the classifier with the highest output value.

Another standard strategy, named one-against-one
(OAO), consists of building k(k —1) /2 predictors, each
differentiating a pair of classes i and j, where i # j.
To combine the output produced by these classifiers, a
majority voting scheme can be applied [17].

Dietterich and Bariki [16] proposed the use of a dis-
tributed output code to represent the k classes associ-
ated with a multiclass problem. For such, a codeword
of length [ is assigned to each class. Commonly, the
codewords have more bits than needed in order to rep-
resent each class uniquely. The additional bits can be
used to correct eventual classification errors. For this
reason, this method is named error-correcting output
coding (ECOC). The generated codes are stored in a
matrix M € {—1,+1}**!. The rows of this matrix
represent the codewords of each class and the columns
correspond to the desired outputs of the [ binary classi-
fiers (f1(x),..., fi(x)) induced. A new pattern X can
be classified by evaluating the predictions of the [ clas-
sifiers, which generate a vector f(x) of length [. This
vector is then compared with the rows of M. The ex-
ample is assigned to the class with the closest row ac-
cording to a given measure, like the Hamming distance.
This process is also known as decoding.

In[7], Allwein et al. presented a framework that uni-
fies the previous decomposition strategies. The OAA
and OAO techniques were also reduced to code based
methods. For such, a value from the set {—1,0,+1}
is assigned to each element of the code matrix M. In
the OAA case, M has dimension kxk, with the diag-
onal elements equal to +1. The remaining elements
are equal to —1. In the OAO decomposition, M has
dimension kxk(k — 1)/2 and each column corresponds
to a binary classifier for a pair of classes (i, 7). In each
column representing a pair (¢, j), the value of the ele-
ments corresponding to lines ¢ and j are defined as +1
and —1, respectively. All other elements receive the
value 0, indicating that patterns from the other class-
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es do not participate in the induction of this particular
binary classifier.

Binary classifiers are trained to learn the labels pre-
sented in the columns of M. The prediction of a new
pattern’s class involves a decoding step. The decoding
occurs through the comparison of the joint predictions
of the binary classifiers with the codewords of M. For
this comparison, Allwein et al. [7] proposed the use of
a margin based loss measure, that considers the pat-
tern’s margins obtained by each individual SVM. This
formulation is motivated by the fact that the Hamming
distance ignores the cost function used in the SVMs
training, as well as confidences attached to the predic-
tions made by these classifiers, which can be quantified
by the margins associated to each pattern.

There are also a few works that modify the SVM
internal procedures to perform the multiclass classifi-
cation task directly. Since the focus on this work is on
decomposition strategies, the direct strategies will not
be discussed in this paper.

2.3. Evolutionary design of multiclass SVMs

The determination of an adequate combination of
binary predictors for a given multiclass solution is a
current research issue in ML. This problem can be for-
mulated as a search for codes to represent each class.
Another issue to be addressed is the size of these code-
words (the number of binary predictors in the multiclass
solution). The search of code combinations in con-
junction with the number of binary classifiers to com-
pose the multiclass solution constitutes a combinatori-
al problem. This section proposes the use of Genetic
Algorithms (GAs) [10] to solve this problem.

GAs are search and optimization techniques based
on genetics and natural selection. They deal with opti-
mization problems by investigating populations of pos-
sible solutions or individuals. The optimization pro-
cess usually takes several generations. At each genera-
tion, the fittest individuals from the current population
are selected for the application of genetic operators.
These operators produce a new population of individ-
uals. The most common genetic operators are elitism,
which sends the best individuals to the next genera-
tion, cross-over, which combines features from pairs
of individuals, and mutation, which changes features
of selected individuals. The principle of using vari-
ous individuals representing possible solutions, allied
to the processes of cross-over and mutation, allows a
large search space to be covered in multiple directions,
making GAs a global search technique.

Next, the authors show how GAs were applied to the
multiclass decomposition problem.

2.3.1. Individuals representation

In the representation adopted,each individual corres-
ponds to a possible code matrix M € {—1,0, +1}**L.
The number of columns in the matrix is defined by the
size of the individual. Individuals of different sizes
were allowed. Two individuals that represent possible
solutions to a problem with four classes are illustrated
in Fig. 1.

The initial population was composed by individu-
als with random values and sizes. A consistency test
was applied to these individuals, so that each binary
classifier had positive and negative class labels.

2.3.2. Fitness function

The individuals were evaluated by their predictive
power in the multiclass solution. The goal was to min-
imize a multiclass error rate measured by using valida-
tion sets. Unknown classifications were also computed
as errors. An unknown classification occurs when two
or more rows of the code matrix simultaneously have
the minimum distance to the predictions of the binary
classifiers. The decoding of the binary classifiers out-
puts was performed with the use of the margin based
loss measure [7].

If more than one solution presented the same valida-
tion error rates, preference was given to smaller indi-
viduals, which represent simpler models. This criteri-
on follows the Occam’s razor, which states that, among
several correct hypothesis, the simpler should be cho-
sen [19]. The minimization of the number of binary
classifiers can be considered, thus, a second objective
of the GA.

The presence of equal classifiers in the GA solu-
tions was also avoided. Repeated and complementary
columns in a code matrix represent multiple uses of
identical binary classifiers in the same decomposition.
For the incorporation of this restriction to the GA ma-
trices, the authors employed a method proposed in [9].
All individuals that violate the restriction (infeasible)
must have worst fitness than those that respect it (feasi-
ble). The fitness of the infeasible individuals was then
given by the sum of the proportion of equal classifiers
and the maximum validation error of the feasible in-
dividuals. For the feasible individuals, the fitness was
given only by their validation error.

2.3.3. Elitism

The elitism operator selected, at each generation, a
fraction of the best individuals of the current popula-
tion.
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Fig. 1. Examples of two individuals for a problem with four classes.

2.34. Crossover
The following crossover operators were employed:

— Exchange of individuals columns. This operator
exchanges binary classifiers between two individ-
uals, motivated by the fact that a binary predictor
can be more efficient in an alternative combina-
tion. It is illustrated in Fig. 2(a).

— Exchange of groups of columns between indivi-
duals. In this case, given two individuals, their
offsprings are produced permuting all columns
from the parents from randomly selected positions.
Its application enables the production of individu-
als with new sizes. This operator is illustrated in
Fig. 2(b).

The selection of parents for crossover was performed
with tournament selection [10]. To select one individ-
ual, two solutions are randomly chosen from the pop-
ulation. If they are both infeasible, the individual with
the smallest number of violations is chosen. If only
one individual is feasible, it is automatically chosen.
Otherwise, a number between 0 and 1 is generated. If
this number is lower than 0.75, the fittest individual is
chosen. Otherwise, the other individual is selected.

2.3.5. Mutation
Four types of mutation operators were investigated:

— Change the value of a matrix element, randomly
selected. This operator is illustrated in Fig. 3(a).

— All the values in a matrix column can be modified.
Figure 3(b) illustrates this procedure.

— Generate a new column (binary classifier), with
random values for its genes. Figure 3(c) illustrates
this case.

— Remove a random column from an individual,
eliminating a binary classifier, as illustrated in
Fig. 3(d).

Table 1
Datasets main characteristics

Dat 1Tr fTest #Cl gAttrib

mea/min/max

num/nom ex/class
car 1728 - 4 0/6 432/65/1210
lun 203 — 5 12600/0 40.6/6/139
seg 2310 - 7 19/0 330/330/330
fun 2355 — 9 40/0 261.7/34/814
pen 7494 3498 10 16/0 749.4/719/780

It should be noticed that the application of the mu-
tation operators may generate columns (binary classi-
fiers) without positive or negative labels. A consisten-
cy phase was employed to correct these cases, defining
new positive/negative labels.

As there are multiple types of crossover and mutation
operators, it is necessary to define which operator to
apply. For such, a criterion used in [13] was applied.
Each possible operator was selected probabilistically
according to its performance in previous generations.
By this scheme, operators that produced better solutions
in previous generations have higher chances of being
applied again and the importance of each operator is
adapted by the GA.

24. Datasets

The main characteristics of the datasets employed in
this work are presented on Table 1. This table presents,
for each dataset, the number of training data (§Tr),
the number of test data (§Test), the number of classes
(#C1), the number of numeric and nominal attributes
(#Attrib num/nom) and the mean, minimum and max-
imum number of examples per class (mea/min/max
ex/class).

The datasets car, segment (seg) and pen-digits (pen)
were obtained from the UCI repository [5], which
provides benchmarks for ML algorithms. The other
datasets are related to Bioinformatics applications.
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Fig. 2. Types of crossover operators employed.

The data in the car dataset represent cars classified
into four categories. The segment dataset has patterns
divided into seven classes of outdoor images. In the
pen-digits dataset, the data are handwritten digits.

The lung! (lun) dataset has gene expression data for
the classification of lung tissues. There are five classes.
One of them corresponds to normal tissues and the
remaining constitute four types of lung tumors. An
attribute selection step was applied to this dataset, to
reduce its number of attributes and thus simplify the

L This dataset was obtained from http://www.gems-system.org.

posterior classifiers induction process. As a result, the
500 most relevant genes for discriminating the tissue
types were selected. The method employed for attribute
selection is described in [15] and considers the gene
expression ratios between groups and within groups.

The fungi? dataset (fun) has proteins classified into
nine possible locations. Protein localization is an im-
portant problem of Bioinformatics, since many cellular
functions are carried out in specific compartments of
the cell. The proteins contained in this dataset were
pre-processed for the extraction of numerical attributes
according to a method proposed in [12]. First, each
protein was divided into two halves. A composition
vector, which presents the proportion of the 20 amino
acids in the sequences, was then built for each half.
The two vectors obtained were merged to form the final
representation of the protein, with 40 attributes. This
representation allows the consideration of the sequence
order of the amino acids in the proteins.

3. Experiments

This section presents the experiments conducted in
order to evaluate the algorithm proposed in this work.

3.1. Data Pre-processing

All datasets, except for pen-digits, were divided ac-
cording to the r-fold cross validation methodology.
Each one of these datasets was divided into r disjoint
subsets of approximately equal size. In each train/test
round, 7 — 1 subsets were used for training and the
remaining was left for test. This makes a total of r
pairs of training and test sets. In order to ensure that
all folds had elements from every class, a stratified ap-
proach was adopted, in which each partition presented
the same class distribution found in the original dataset.
The number of folds was defined according to each
dataset class distribution, in order to ensure the pres-
ence of elements of every class in the test sets. For the
car, segment and fungi datasets, the value adopted was
r = 10. For the lung dataset, r = 3. For the pen-digits
dataset, the original train/test split present in the UCI
repository was used.

To evaluate the individuals in the GA, each training
set was further divided with the holdout method into

2This dataset was obtained from http://www.cs.ualberta.ca/”
bioinfo/PA/Subcellular.
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Fig. 3. Types of mutation operators employed.

two subsets. The first subset, with 70% of the data, was
used for training the classifiers in the GA, while the
30% remaining defined a validation set used to evaluate
the error rates of the code matrices in the multiclass
solution.

For the SVMs, all data attributes must be in numeri-
cal format. Therefore, the nominal attributes in the car
dataset were codified accordingly. A canonical encod-
ing was adopted, where there is a bit for each possible
attribute value.

Finally, some datasets were normalized, preventing
the domination of attributes in higher numerical ranges
over those in lower levels. The training sets’ attributes
were normalized to have zero mean and unit variance.

Their corresponding test and validation sets were pre-
processed according to the normalization factors ex-
tracted from the training sets. This normalization step
was not applied to the fungi dataset, because it would
oversight the amino acid order information imposed by
the protein encoding employed. The car dataset, whose
attributes were codified in canonical format, was also
not normalized.

3.2. Experiments configuration
The OAA strategy is the most frequently used in the

generalization of SVMs to multiclass problems. There-
fore, the GA was employed to find code matrices with
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a maximum number of classifiers equal to k, which
corresponds to the number of binary predictors in the
OAA strategy. The OAA matrix was also supplied as
an initial solution to the GA. The objective of this study
can be summarized as to determine decompositions ad-
equate to each multiclass problem that are simpler than
OAA, requiring less binary classifiers and with accura-
cy superior or similar to OAA. The number of binary
predictors allowed for the GA matrices was constrained
to the interval [[log,(k)], k], where [log, (k)] corre-
sponds to the minimum number of binary classifiers
necessary to distinguish k classes.

The GAs employed a crossover rate equal to 0.8, a
mutation rate equal to 0.05, a population size equal to
5 * k and a maximum number of cycles equal to 50 * k,
where k denotes the number of classes of the multiclass
problem. The population size and the maximum num-
ber of cycles were defined according to the character-
istics of each dataset. For problems with more classes,
they were larger, since the search space grows with the
number of classes.

As the GAs experimental results depend on the ini-
tial solutions provided, they were executed 30 times for
each train/test partition of a dataset. The results pre-
sented correspond to the average of the results obtained
in the 30 runs.

Besides the OAA and GA matrices, other two types
of code matrices were generated: the OAO and the
ECOC. The ECOCs were built with the exhaustive
method described in [16]. Given a problem with &
classes, k codewords of length 2¥~1 — 1 were construct-
ed. The codeword of the first class is composed of only
+1 labels. For the other classes i, where 7 > 1, it is
composed of alternate runs of 2*~% negative (—1) and
positive (+1) labels. The application of this procedure
corresponds to produce classifiers for each possible bi-
nary partition of the k classes.

To verify the behavior of the GA-based strategy and
its ability to find adequate solutions, random matrices
with numbers of classifiers in the interval [[log, (k)] k]
were also generated. As in the GA, a total of thirty
matrices of this type were produced for each train/test
partition of each dataset. The goal was to verify if the
GA solutions were more adequate than those obtained
through a random search. In each matrix obtainment,
a procedure similar to the one adopted in [7] for the
creation of random matrices was followed. A total of
10000 random matrices were built, with elements in
{—1,0,+1} and varying sizes. The matrix with the
highest minimum Hamming distance between lines and
without identical columns was chosen. Although the

generation of each one of the thirty matrices was not
completely random, for simplicity, they will be denoted
as random in the subsequent analysis.

All simulations with binaries SVMs were performed
with the LibSVM library [6], using a C' value of 100
and a Gaussian kernel function with standard deviation
o of 0.01. Although the best values of the SVM pa-
rameters may differ for each multiclass strategy, they
were kept the same to allow a fair evaluation of the
differences between the investigated techniques.

3.3. Results and analysis

The accuracy rates of the previously mentioned
strategies are shown on Table 2. The mean accuracy
rates of all solutions are illustrated for the GAs and the
random matrices. Standard deviation rates are reported
in parenthesis.

Itis important to observe the stability of the solutions
produced by GA. The accuracy rates of the GA matri-
ces were clearly more stable than the random matrices,
showing lower standard deviation rates. For datasets di-
vided with cross validation, the GA standard deviation
rates were similar to the OAA, OAO and ECOC rates.
Most of the variations observed can then be attributed
to the use of the cross validation procedure, that is, that
the accuracy rates have been calculated from distinct
partitions of the datasets.

To verify more clearly the differences among the
results obtained, the accuracy rates of all strategies in
each dataset were compared using a statistical test for
multiple comparisons [2]. Among the several random
and GA solutions obtained in a given dataset partition,
the one with accuracy rate closer to the mean accuracy
of all solutions was chosen to represent the tests.

For all datasets, the random matrices showed accu-
racy rates statistically different from and inferior to the
other strategies. The GA search was therefore better
than a random process. In the car dataset, OAA and
ECOC accuracies were statistically different from those
produced by GA and OAQO, which were higher. In the
lung dataset, the GA mean accuracy was statistically
different from the OAO accuracy, which was inferior.
In the fungi dataset, the OAA accuracy was statisti-
cally different from the OAO, ECOC and GA accura-
cies, which were higher. In the segment and pen-digits
datasets, the results of OAA, OAO, ECOC and GA
were all statistically similar.

From the statistical analysis and from the results on
Table 2, the GA solutions either showed the highest
accuracies or were among the strategies with highest
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Table 2
Datasets results

Accuracies f Bin. Classifiers Time
Dat. OAA OAO ECOC Rand. GA OAA OAO ECOC Rand. GA GA
car 940(2.6) 98.1(1.3) 93.8(2.8) 85.1(20.1) 97.8(14) 4 6 7 32(0.7) 3.6(05) 9.0(0.2)
lun 828(@3.0) 764(13) 828((3.0) 659(22.1) 855(4.8) 5 10 15 41(0.8) 3.6(0.7) 25.2(0.2)
seg  954(15) 96.6(1.0) 949(12) 678(16.1) 962(1.1) 7 21 63 49(14) 65(0.7) 68.7 (3.5)
fun 56.1(2.1) 604(24) 60234 398(11.7) 62.0(2.6) 9 36 255 69(19) 7.7(12) 402.5 (32.4)
pen 979 97.3 97.8 69.5(20.8) 97.4(0.3) 10 45 511 64(22) 9.8(0.6) 573.0 (24.2)

accuracies in all datasets. The ECOC and OAO accura-
cies were among the best in four datasets, while OAA
showed good accuracies in three datasets. The GA was
consequently able to either maintain or improve the ac-
curacies of OAA. Thus, it accomplished the first goal of
the experiments. Another goal of the experiments with
the GA was to minimize the number of binary classi-
fiers in the decompositions. Table 2 also presents this
information, showing the number of binary classifiers
of all matrices generated.

The GA was also able to reduce the number of bi-
nary classifiers when compared to OAA in all cases.
However, in the pen-digits dataset, the mean number of
classifiers of the GA solutions was close to that of the
OAA strategy. An exam of the GA solutions in this case
showed that the obtained matrices were similar to the
OAA matrix. This fact agrees with a recent affirmation
that the OAA decomposition is adequate to multiclass
solutions with SVMs [14]. Moreover, it indicates that
a reduction in the number of binary classifiers may not
be appropriate for this particular dataset.

Among the matrices produced by OAA, OAO and
ECOC, the lowest number of binary classifiers was
required by OAA, with k predictors for k classes. Next
comes the OAO matrix, with k(k — 1)/2 predictors.
ECOC had the highest number, 2k=1 _ 1. The random
matrices, as expected, showed variations in the number
of binary classifiers.

Itis also interesting to notice that, in the fungi and the
lung datasets, where the GA matrices presented the best
accuracies, there were large reductions in the number of
binary classifiers. This is an interesting result, since it
illustrates that, through the use of a search mechanism
that adapts code matrices to the multiclass problem
solution, it is possible to obtain higher accuracy rates
with simpler decompositions.

The time required by the GA, in seconds, to obtain its
solutions for each dataset is also illustrated in Table 2.
They varied according to the problem size, measured
by the number of data instances and classes. To speed
up the GA, two lists were implemented. The first list
stored classifiers already trained and evaluated on the

validation set. The second list kept entire code matrices
previously evaluated.

As the genetic operators were probabilistically ap-
plied according to their performance, the genetic oper-
ators with the highest contribution to the achievement
of the final solutions were also recorded. The crossover
operator that exchanges pairs of columns was the most
frequently used. In the mutation case, there was a
prominance of the first type, that randomly changes the
value of an element in a code matrix. They can be then
considered the most adequate operators for this search
problem for the investigated datasets.

4. Discussion

From the results and analysis of the previous sec-
tion, the authors observed that the GA was able to ob-
tain matrices with good accuracy rates and less binary
classifiers than the OAA, OAO and ECOC strategies.

The datasets with the best results for the GA strat-
egy were lung and fungi, which represent real Bioin-
formatics applications. The GA produced code matri-
ces whose mean accuracies were the highest among all
tested strategies.

The reported accuracy rates on the lung dataset were
inferior to those previously published in [4], although a
fair comparison is not possible, since they performed a
model selection to adjust the SVMs parameters. How-
ever, as in [4], the OAA strategy was slightly better
than the OAO. The GA was able to further improve the
accuracy rate achieved, which was in turn statistically
different from the OAO one.

The results for the fungi dataset were also inferior
to those reported in a previous work using the same
dataset [18]. However, the superior performance ob-
tained in this other work can be attributed to the use
of a more complex protein representation than the one
employed in this paper.

Although the overall performance of the different
algorithms were similar in several cases, there were
differences in the performance obtained for each class.
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Each strategy tended to favor one or more classes. This
knowledge can be used to choose a particular technique
in domains where the classes have different relevance.
The complete results are not presented here due to space
limitations. The GAs had the tendency to increase the
accuracy rates for classes with less data.

Clearly, the adaptation of code matrices through GA
has a computational cost, that increases for problems
with more classes. This deficiency must be taken into
account, since the performance of the obtained matrices
was similar to the ones achieved by other strategies.
However, GAs can benefit from the increasing use of
parallel technologies in order to reduce their processing
cost.

The objectives of minimizing the validation error
rates with a matrix of minimum size were also formu-
lated and solved by means of a multi-objective GA.
However, the results were disappointing. Although the
code matrices obtained had less binary classifiers, they
were not able to maintain the accuracy rates of other
decomposition strategies found in the literature.

5. Conclusion

This work presented a new approach for multiclass
SVMs generation based on GAs. For such, GAs were
applied to determine combinations of binary classifiers
in a multiclass solution. This new technique allows
the construction of multiclass solutions more related to
the problem’s characteristics. The matrices obtained in
benchmark and Bioinformatics applications were able
to either maintain or improve the accuracy of common
code matrix strategies through the use of simpler de-
compositions, that required less binary classifiers.

Future experiments will consider the modification of
the SVMs and GAs parameters, since this procedure
can improve the results obtained in the experiments
carried out.

Other modification being considered include using
leave-one-out bounds from the SVM literature (like
the ones in [3]) in the GA’s fitness evaluation. Works
involving the use of GAs in conjunction with SVMs
have proved that these bounds can be more effective
to evaluate the SVMs fitness than a cross validation
methodology (ex.: [8]).

It should be noticed that the multiclass approaches
used in this paper are general and can be applied to
other multiclass problems. They can also employ other
base learning techniques, requiring only a change in the
decoding function used in the classifiers integration.
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