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Rapidly rotating quantum droplets confined in a harmonic potential
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We consider a “symmetric” quantum droplet in two spatial dimensions, which rotates in a harmonic potential,
focusing mostly on the limit of “rapid” rotation. We examine this problem using a purely numerical approach, as
well as a semianalytic Wigner-Seitz approximation (first developed by Baym, Pethick, and their co-workers) for
the description of the state with a vortex lattice. Within this approximation we assume that each vortex occupies
a cylindrical cell, with the vortex-core size treated as a variational parameter. Working with a fixed angular
momentum, as the angular momentum increases and depending on the atom number, the droplet accommodates
none, few, or many vortices, before it turns to center-of-mass excitation. For the case of a “large” droplet, working
with a fixed rotational frequency of the trap �, as � approaches the trap frequency ω, a vortex lattice forms,
the number of vortices increases, the mean spacing between them decreases, while the “size” of each vortex
increases as compared to the size of each cell. In contrast to the well-known problem of contact interactions,
where we have melting of the vortex lattice and highly correlated many-body states, here no melting of the
vortex lattice is present, even when � = ω. This difference is due to the fact that the droplet is self-bound. For
� = ω, the “smoothed” density distribution becomes a flat top, very much like the static unconfined droplet.
When � exceeds ω, the droplet maintains its shape and escapes to infinity, via center-of-mass motion.

DOI: 10.1103/PhysRevA.110.043302

I. INTRODUCTION

In recent years the problem of quantum droplets has
attracted significant attention. As Petrov [1] pointed out,
quantum droplets are self-bound states, which may appear
in binary mixtures of Bose-Einstein condensed atoms. Un-
der typical conditions, the mean-field energy is the dominant
part of the energy, while the (beyond-mean-field) correc-
tions [2] are very small. This is due to the diluteness
condition—which holds in the vast majority of experiments in
(single-component) cold-atomic systems. In a two-component
system, however, if we tune the interspecies and intraspecies
coupling constants, the mean-field energy may take any—
even an infinitesimally small—value. In this case, the energy
due to the beyond-mean-field effects [2] is no longer negligi-
ble, but rather it may balance the one due to the mean field.
Under these conditions the self-bound quantum droplets form.

The literature on this problem is rather extensive. Here we
refer to just a few of the studies on quantum droplets; see,
e.g., the review articles [3,4] and Refs. [5–30]. Experimen-
tally, quantum droplets have been observed in two-component
Bose-Einstein condensed gases [31–35], but also in single-
component gases with strong dipolar interactions [36–41].

Quantum droplets offer a new system for studying the
effects which are associated with “superfluidity” [42]. The
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present study focuses on the rotational properties of this
novel superfluid. Remarkably, since quantum droplets are
self-bound, the nonlinear term that results from the inter-
actions is partly attractive and partly repulsive. This is in
sharp contrast to the case of contact interactions, where the
scattering length has a fixed sign and as a result the effective
interaction is either (purely) repulsive, or (purely) attractive.
While the existence of these droplets does not require the
presence of any trapping potential, the combination of an ex-
ternal potential with the nonlinear term gives rise to a very rich
phase diagram. As a result, studying the rotational properties
of quantum droplets under the action of an external potential
is an interesting problem.

In the case of a harmonically trapped single-component
atomic condensate with an attractive contact interaction, the
angular momentum is carried via center-of-mass excitation
[43–45], where the cloud shifts from the center of the trap and
rotates as a whole, without its shape being affected. On the
other hand, for repulsive contact interactions, as the rotational
frequency of the trap � increases, vortices enter the cloud
and eventually a vortex lattice forms [46–50]. As � increases
even further, various interesting effects show up and the lattice
“melts.” As � → ω−, where ω is the trap frequency, the sys-
tem enters a highly correlated regime, where the many-body
state is no longer a product, mean-field state. This is due to the
fact that as � increases, the effective potential, i.e., the sum of
the confining potential, plus the centrifugal, becomes less and
less steep, and it vanishes when � = ω.

The rotational properties of harmonically trapped droplets
have already been studied in several interesting studies. Ref-
erence [16] investigated the lowest-energy state of the system
for some fixed value of the total angular momentum Lh̄ and
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demonstrated the formation of vortices as L increases. In
Ref. [22] the same problem was considered. There it was
shown that depending on the atom number N , the frequency
of the trapping potential ω and the total angular momentum
Lh̄, various phases may appear. These include center-of-mass
excitation, ghost vortices, as well as vortices of single and
multiple quantization. In Ref. [25] we worked also at fixed
L and found that as L increases, there is a mixed state, where
the droplet carries vortices and also undergoes center-of-mass
excitation. Reference [26] considered the problem of a “large”
droplet, as � varies from “small” values, up to the case � →
ω. The properties of the resulting vortex lattice were studied.
Finally, Ref. [27] examined the case � = ω and the limit of
weak interactions and showed the formation of a triangular
vortex lattice.

An important observation is that there are two separate
length scales, namely, the size of the droplet R (which is an
increasing function of N) and the oscillator length aosc. For a
fixed value of aosc, when the number of atoms N which consti-
tute the droplet is sufficiently small, the size of the droplet may
be also much smaller than the oscillator length, i.e., R � aosc.
In this case the droplet carries its angular momentum purely
via excitation of its center of mass. As N increases, the droplet
size R increases too, and as a result the droplet starts to get
“compressed” by the harmonic potential. Eventually, when R
becomes comparable to aosc, instead of center-of-mass exci-
tation, we have vortex excitation. Vortices start to penetrate
the droplet, while for a sufficiently large value of R and �, a
vortex lattice forms. However, as mentioned also above, we
have shown in a recent study [25] that for a sufficiently large
value of L—or, equivalently, as � approaches ω—the droplet
starts to undergo center-of-mass excitation. This is a “mixed”
state, where the droplet undergoes center-of-mass excitation,
while it carries vortices.

In the derived results which are presented below it is crucial
that the relative coordinates separate from the center-of-mass
coordinate [45]. This is true only in the case of harmonic
confinement. Therefore, there are two completely indepen-
dent and fully decoupled forms of excitation. As a result, the
droplet may carry its angular momentum via vortex excitation,
via center-of-mass excitation, or via a superposition of these
two kinds of excitation, depending on the value of the chosen
parameters.

Two are the basic goals of the present study. The first one
is to examine how these two independent kinds of excitation
(i.e., center-of-mass and vortex) show up, depending on the
atom number and on the value of the angular momentum. The
second goal is to investigate the properties of the vortex lat-
tice, especially when � approaches ω. This question includes
the overall size of the droplet, as well as the “size” of each
vortex core. These questions are examined as N and � are
varied. We rely on purely numerical results and mostly on
a semianalytic approach, using a (variational) Wigner-Seitz
approximation for the vortex lattice, which has been used
in Refs. [51–56]. The main idea is that, in the presence of
a vortex lattice there is a smoothed, slowly varying, density
distribution and, on top of that, a rapidly varying density
distribution due to the presence of the vortices. Treating the
size of each vortex core variationally, we manage to develop a
theory for the smoothed density distribution.

In what follows below we first describe in Sec. II the model
that we adopt. We consider a “symmetric” droplet, where the
two components have an equal population of atoms and the
coupling constants between the same components are equal to
each other. We consider rotation of the droplet in the presence
of a harmonic potential in purely two dimensions. In this
section we start with the general model and also introduce
our dimensionless quantities, giving also some experimen-
tally relevant scales. Then we consider the limit of “rapid”
rotation, turning to the Wigner-Seitz approximation that we
adopt, which is suitable for the description of a vortex lat-
tice. There we present the equations for the smoothed density
distribution. In Sec. III we consider the Thomas-Fermi limit
of the Wigner-Seitz approximation, for � = ω, deriving some
analytic results. In Secs. IV and V we present the main results
of our study. In Sec. IV we examine the first question that was
mentioned in the previous paragraph, namely, how the angular
momentum is distributed between vortex and center-of-mass
excitation. In Sec. V we examine the second set of questions,
namely, the properties of the vortex lattice as N and � are
varied. Finally, in Sec. VI we give a summary and a discussion
of the main results of our study.

II. MODEL

A. General equations

First of all, we assume that there is a very tight potential
along our z axis, which forces the atoms to move on the
xy plane, and therefore we consider strictly two-dimensional
motion. We also consider a two-component Bose-Einstein
condensate, where the two components, which we denote as
“↑” and “↓” , have an equal population of atoms, N↑ = N↓,
and we consider equal masses M for the two components.
Regarding the atom-atom interactions, we assume an equal
coupling between the same species, denoted as g, i.e., g↑↑ =
g↓↓ = g, while the coupling between ↑ and ↓ is denoted as
g↑↓.

Because of the assumptions mentioned above, there is a
common order parameter for the two components, which sat-
isfies the following equation [5]:

ih̄
∂�

∂t
= − h̄2

2M
∇2� + 1

2
Mω2r2�

+ 4π h̄2

M ln2(a↑↓/a↑↑)
|�|2 ln

|�|2
2
√

en0
�. (1)

Here a↑↑ and a↑↓ are the two-dimensional scattering lengths
for elastic atom-atom collisions between the same species
(assumed to be equal for the two components, i.e., a↑↑ = a↓↓)
and for different species, respectively. Furthermore,

n0 = e−2γ−3/2

2π

ln(a↑↓/a↑↑)

a↑↑a↑↓
. (2)

Here γ is Euler’s constant, γ ≈ 0.5772, and

ln(a↑↓/a↑↑) =
√

π

2

(
az

a3D
− az

a3D
↑↓

)
. (3)

In the above equation az is the “width” of the droplet along
the axis of rotation, and a3D, a3D

↑↓ are the three-dimensional
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scattering lengths for elastic atom-atom collisions between the
same and different species, respectively. Introducing

�2
0 = 2

√
en0 = e−2γ−1

π

ln(a↑↓/a↑↑)

a↑↑a↑↓
, (4)

and setting �̃ = �/�0, Eq. (1) becomes

i
∂�̃

∂ t̃
= −1

2
∇̃2�̃ + 1

2
ω̃2r̃2�̃ + |�̃|2 ln |�̃|2�̃. (5)

Here t̃ = t/t0, where

t0 = Ma↑↑a↑↓ ln(a↑↓/a↑↑)

4h̄e−2γ−1
. (6)

Also, r̃ = r/x0 and ∇̃2
is the dimensionless Laplacian, with

the unit of length being x0, where

x0 =
√

a↑↑a↑↓ ln(a↑↓/a↑↑)

4e−2γ−1
. (7)

Furthermore, ω̃ = ω/ω0, where the units of the frequency, ω0

and of the energy, E0, are

E0 = h̄ω0 = h̄

t0
= h̄2

Mx2
0

= h̄2

Ma↑↑a↑↓

4e−2γ−1

ln(a↑↓/a↑↑)
. (8)

The normalization condition takes the form∫
|�̃|2 d2r̃ = N

N0
, (9)

where

N0 = �2
0 x2

0 = 1

4π
ln2(a↑↓/a↑↑), (10)

which is the unit of N .
Finally, the time-independent equation that corresponds to

Eq. (5) is derived after we set �(r̃, t̃ ) = �(r̃)e−iμ̃t̃ , where μ̃

is the dimensionless chemical potential, thus getting

− 1
2 ∇̃2�̃ + 1

2 ω̃2r̃2�̃ + |�̃|2 ln |�̃|2�̃ = μ̃�̃. (11)

We stress that the “tilde” used in the symbols in the present
section, which represents dimensionless quantities, is dropped
in all the equations which follow below for convenience.

Equation (10) allows us to evaluate the actual (total) num-
ber of atoms in a droplet. For a typical value of az = 0.1 μm
and a3D = 10.1 nm, a3D

↑↓ = −10.0 nm, ln(a↑↓/a↑↑) ≈ 25.
Then, according to Eq. (10), N0 ≈ 50. Also, the unit of length
x0 turns out to be on the order of 1 μm. Finally, typical values
of the two-dimensional density are ≈109 cm−2, of the three-
dimensional density are 1013 cm−3, t0 is on the order of msec,
and the typical value of the trapping potential is hundreds
of Hz.

The extended energy functional that we consider is, in
dimensionless units [5,24],

E (�,�∗)

= E − L� − μN

=
∫ (

1

2
|∇�|2 + 1

2
ω2r2|�|2 + 1

2
|�|4 ln

|�|2√
e

)
dr

− μ

∫
�∗� dr − �

∫
�∗L̂� dr. (12)

In the above equation E is the total energy and μ is the chem-
ical potential. Also, � is normalized to the scaled number
of atoms,

∫ |�|2 dr = N . The operator L̂ is that of the total
angular momentum. We work with a fixed atom number, and
therefore μ is a Lagrange multiplier. Also, in some of the
calculations that follow below we work with a fixed L (in
which case � is a Lagrange multiplier) [57], and in other
calculations we work with a fixed �, in which case E (�,�∗)
may be viewed as the energy of the system in the rotating
frame.

B. Wigner-Seitz approximation

Following Refs. [51–56] we develop below an approximate
method that allows us to study this problem in the presence
of a vortex lattice. The assumptions which we make here
are the following. First of all, we consider a droplet with a
large atom number, as well as a large number of vortices. Also,
we assume that the length scale over which the “smoothed”
density of the droplet changes (see also below) is much larger
than the spatial size of each vortex core, or, equivalently, that
the smoothed density does not change significantly over the
core size. Actually, when � approaches ω—which is the limit
that we are mostly interested in—the density of the droplet
flattens out. As a result, the only significant variation of the
smoothed density takes place solely at the edge of the droplet
and it is constant elsewhere, as we see below.

Let us write the order parameter as

�(r) = �(r) · f (r)eiφ(r), (13)

and employ a Wigner-Seitz approximation. Since we have a
triangular vortex lattice [26,27], we replace the triangular-
shaped cells of the vortex lattice by cylindrical cells of equal
radius 
cell. Here �(r) is the product of a real and slowly vary-
ing envelope function, �(r), times a rapidly varying factor,
f (r), which vanishes at each vortex core and has a phase φ

which wraps by 2π around each vortex. If we choose f 2 to
average to unity over each unit cell of the lattice,

1

π
2
cell

∫
cell

f 2 drc = 1, (14)

where the integration is performed over one cell, then �2(r) =
ns(r) is the smoothed density profile of the droplet. Indeed,
if we write the position vector r = R j + ρc, where R j is the
center of the cell with index j, and ρc is the radial coordinate
measured from each vortex line,∫

|�(r)|2 dr =
∑

j

ns(R j )
∫

cell
f 2 drc

= π
2
cell

∑
j

ns(R j ). (15)

Converting the sum over cells into an integral,

π
2
cell

∑
j

ns(R j ) →
∫

ns(r) dr, (16)

we find that ∫
|�(r)|2 dr =

∫
ns(r) dr = N, (17)
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where the integration is over all the xy plane.
From Eq. (13) it follows that the kinetic energy K is

K = 1

2

∫
|∇�|2 dr

= 1

2

∫
[(∇�)2 + ns f 2(∇φ)2 + ns(∇ f )2)] dr, (18)

where in the first term on the right we have assumed that
�2(r) varies slowly across a unit cell of the vortex lattice
and thus f 2 has been replaced by its average, i.e., unity. In
Eq. (18) there is also an integral which is proportional to∫ ∇( f 2) · ∇ns dr. Integrating by parts and replacing f 2 by its
average, we get an integral which is proportional to

∫ ∇2ns dr.
From the divergence theorem this is equal to a surface integral,
which vanishes.

We write the local velocity in some cell with index j as the
sum of a term that comes from solid body-rotation � × R j ,
plus the local velocity around the vortex, ∇χ j ,

∇φ = � × R j + ∇χ j . (19)

Although the rotational velocity of the lattice is not neces-
sarily equal to the rotational velocity of the trap, for a large
system the difference between them is small [53].

Combining Eqs. (18) and (19),

K =
∫

1

2
(∇�)2d r + π
2

cell

∑
j

1

2
ns(R j )�

2R2
j

+
∑

j

ns(R j )
∫

cell

1

2
[(∇ f )2 + f 2(∇χ j )

2] drc. (20)

Here the last integration is over each cell. Also, we have
assumed that the cross term, which involves the inner product
(� × R j ) · ∇χ j is negligible, since the density does not vary
significantly across the cell.

Regarding the energy due to the harmonic potential, V =
(1/2)ω2r2, its contribution to the energy may be written in the
form

V = 1

2
ω2

∫
�2 f 2r2 dr

=
∑

j

1

2
ns(R j )ω

2

(
π
2

cellR
2
j +

∫
cell

f 2ρ2
c drc

)
. (21)

From Eqs. (20) and (21) we get that

K + V =
∫

1

2
(∇�)2d r + π
2

cell

∑
j

1

2
ns(R j )(�

2 + ω2)R2
j +

∑
j

ns(R j )
∫

cell

1

2

[
(∇ f )2) + f 2(∇χ j )

2 + ω2 f 2ρ2
c

]
drc. (22)

In the neighborhood of a given vortex, the local velocity ∇χ j

is ≈ φ̂/ρc, where φ̂ is the unit vector around each cell. Also,
f is approximately radially symmetric about each vortex line.
Thus, the first two terms in the integral in the last sum in
Eq. (22) take the form

∫
cell

1

2
[(∇ f )2) + f 2(∇χ j )

2] drc

≈
∫

cell

1

2

[(
∂ f

∂ρc

)2

+ f 2

ρ2
c

]
drc ≡ πa j . (23)

Similarly, for the third term in the integral which appears in
the last sum of Eq. (22), we introduce the mean value of ρ2

c in
the cell with index j, 〈ρ2

c, j〉,

〈
ρ2

c, j

〉 = 1

π
2
cell

∫
cell

f 2ρ2
c drc ≡ 
2

cellb j = b j

�
. (24)

Here we have used Feynman’s formula for the vortex density,
nv = �/π = 1/(π
2

cell ). We assume that the quantities a j and
b j are independent of the cell, and in what follows we will
assume that all of them have a common value a, and b, re-
spectively. This assumption implies that our approach is more
accurate when � approaches ω, as we discuss in more detail
below.

Converting the two terms in Eq. (22) which correspond
to the ones in Eq. (23) into an integral (over the whole xy

plane),

∑
j

ns(R j )
∫

cell

1

2
[(∇ f )2) + f 2(∇χ j )

2] drc

→ a


2
cell

∫
ns(r) dr = a�

∫
ns(r) dr. (25)

Similarly, the last term in Eq. (22) may also be converted into
an integral, which is given by

∑
j

ns(R j )
∫

cell

1

2
ω2 f 2ρ2

c drc y

→ 1

2
ω2

〈
ρ2

c

〉 ∫
ns(r) dr = b

2

ω2

�

∫
ns(r) dr. (26)

Finally, we examine the energy due to the nonlinear term,
which is∫

1

2
|�|4 ln

|�|2√
e

dr

= 1

2

∑
j

∫
cell

n2
s (R j ) f 4(ρc) ln

ns(R j ) f 2(ρc)√
e

drc. (27)

To evaluate the integral over the unit cell we make the follow-
ing ansatz for f (ρc):

f (ρc) =
{

(1 − ζ/2)−1/2(ρc/ξ ) for 0 � ρc � ξ,

(1 − ζ/2)−1/2 for ξ < ρc � 
cell,
(28)
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where ξ is a variational parameter and ζ = (ξ/
cell )2 � 1 is the fractional area of the vortex core in the unit cell. Therefore,∫
1

2
|�|4 ln

|�|2√
e

dr =
∫

1

2

�4(r)

(1 − ζ/2)2

[(
1 − 2

3
ζ

)
ln

�2(r)

(1−ζ/2)
√

e
−ζ

9

]
dr. (29)

To get the last equality we converted the sum into an integral.
Therefore, from Eqs. (22), (25), (26), and (29) the total energy of the system is

E =
∫

1

2
[∇�(r)]2 dr +

∫ [
1

2
(�2 + ω2)r2 + a� + b

ω2

2�

]
�2(r) dr+

∫
1

2

�4(r)

(1 − ζ/2)2

[(
1 − 2

3
ζ

)
ln

�2(r)

(1 − ζ/2)
√

e
− ζ

9

]
dr.

(30)

Equation (23), with the ansatz of Eq. (28), implies that

a(ζ ) = 1 − ln
√

ζ

1 − ζ/2
. (31)

Also, Eqs. (24) and (28) imply that

b(ζ ) =
〈
ρ2

c

〉

2

cell

= 1 − ζ 2/3

2 − ζ
. (32)

We turn to the angular momentum, which is given by

L =
∫

�2(r) f 2 (r × ∇φ)z dr. (33)

Making similar approximations as before, it turns out that

L = π
2
cell

∑
j

�2(R j )
(
�R2

j + 1
)
, (34)

which may again be converted into an integral,

L =
∫

�2(r)(�r2 + 1) dr. (35)

Therefore, from Eqs. (30) and (35) it follows that the energy functional E − L� − μN is

E (�,�∗) = E − L� − μN =
∫

1

2
[∇�(r)]2 dr +

∫ [
1

2
(ω2 − �2)r2 + (a − 1)� + b

ω2

2�
− μ

]
�2(r) dr

+
∫

1

2

�4(r)

(1 − ζ/2)2

[(
1 − 2

3
ζ

)
ln

�2(r)

(1 − ζ/2)
√

e
− ζ

9

]
dr. (36)

It is useful to get some insight into the terms that appear in the above equation. The relevant dimensionless parameter is Nω,
which is ≈ R2/a2

0  1, with R being the radius of the droplet and a0 = 1/
√

ω the oscillator length. (As we see below, in the
Thomas-Fermi limit, R2 ∼ N .) The three dominant terms in Eq. (36) are the following. First, we have the energy associated with
the center-of-mass motion, KCOM = I�2/2, where I = (1/2)

∫
ns(r)r2 dr is the moment of inertia of the droplet. The second

dominant term is the energy due to the harmonic trapping potential, V = Iω2/2. Finally, the third dominant term is the −L�

term, (i.e., the usual term that we use when we evaluate the energy in the rotating frame), where L = I�. Obviously this term is
equal to −I�2. All these three terms are of order N2ω2 (here we assume that � ≈ ω and actually, for � = ω, KCOM + V − L�

vanishes, to leading order in Nω).
The energy due to the nonlinear term is of order N . Finally, the terms (a − 1)� and bω2/(2�) are of order Nω. We should

also mention that the kinetic energy that results from the spatial variations of ns(r), [∇�(r)]2 is the smallest one and is of order
N/R2, i.e., of order unity and is significant only at the edge of the droplet.

The (nonlinear) differential equation that follows from the energy functional of Eq. (36) is(
−1

2
∇2 + 1

2
(ω2 − �2)r2 + (a − 1)� + b

ω2

2�

)
�(r) + �2(r)

(1 − ζ/2)2

[(
1 − 2ζ

3

)
ln

�2(r)

(1 − ζ/2)
√

e

1

2
− 4ζ

9

]
�(r) = μ�(r).

(37)

From the solution of the above equation we get all the rele-
vant parameters of the (rapidly rotating) droplet. First of all,
the value of ζ that minimizes the energy functional gives
the fractional area of the vortex core in the unit cell. Also,

the smoothed density distribution, ns(r), is the solution of
Eq. (37). Furthermore, the angular momentum is given by
Eq. (35), which is of order N2�  1, while the number of
vortices Nv ≈ �R2, i.e., Nv ∼ L/N ∼ N�  1.
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FIG. 1. Energy per particle in the rotating frame, (E − L�)/N ,
as function of the variational parameter ζ , for � = ω = 0.05 and
N = 1000, 2000, 3000, 4000, and 5000 from top to bottom. The
energy is measured in units of E0.

III. ANALYTIC RESULTS IN THE THOMAS-FERMI
LIMIT, FOR � = ω

In the Thomas-Fermi limit the first term in Eq. (37) is
negligible, and as a result this equation becomes an algebraic
equation. For � = ω, this equation takes the even simpler
form

�2(r)

(1 − ζ/2)2

[(
1 − 2ζ

3

)
ln

�2(r)

(1 − ζ/2)
√

e
+ 1

2
− 4ζ

9

]
= μeff ,

(38)

where μeff = μ − (a − 1)ω − bω/2. The solution of the
above equation gives the constant density of the droplet, while
the normalization condition determines its radius.

We should recall at this point that for the non-rotating
droplet, in the absence of any confining potential, and in the
Thomas-Fermi limit, the energy functional is

E (�,�∗) =
∫

1

2
�4(r) ln

�2(r)√
e

dr. (39)

The corresponding term of Eq. (36) reduces to the above
expression when ζ = 0. The density of the nonrotating droplet
results from minimizing the energy per particle that comes
from Eq. (39) and is equal to n0 = 1/

√
e. Imposing the nor-

malization condition,

R0 =
(

N
√

e

π

)1/2

≈ 0.72
√

N . (40)

In the present problem, minimization of the (interaction)
energy per particle implies that the smoothed (flat-top) density
of the droplet ns(ζ ) is

ns(ζ ) = n0(1 − ζ/2)eζ/(9−6ζ ), (41)

which is a decreasing function of ζ , for 0 < ζ < 1, as ex-
pected. Also, the corresponding radius R(ζ ) is

R(ζ ) = R0

(
e−ζ/(9−6ζ )

1 − ζ/2

)1/2

, (42)

which is an increasing function of ζ , in the same interval. In
Fig. 1 we show (E − L�)/N as function of ζ , for � = ω,
which we find numerically. Here N = 1000, 2000, 3000,
4000, and 5000 from top to bottom. In this plot we see that the

value of ζ which minimizes the energy in the rotating frame
approaches the value ζ0 ≈ 0.37. For this value,

R(ζ0) ≈ 1.08 R0 ≈ 0.78
√

N (43)

and

ns(ζ0) ≈ 0.86 n0. (44)

Both the increase in R(ζ ) (by roughly 8%) and the decrease
in ns(ζ ) (by roughly 14%) as compared to the nonrotating
droplet are due to the presence of the vortices. We stress that
in the derivation of the above results we have kept only the
energy due to the nonlinear term, which is of order N . Among
the neglected terms two are the most important, i.e., the ones
associated with a and b, which are of order Nω. These are
also of order N , but much smaller due to the assumption
R2/a2

0  1, which we discussed in the previous section. It is
needless to say that in the numerical results none of the above
terms is neglected.

Regarding the size of each vortex core ξ ,

ξ

R(ζ0)
∼ 1√

Nω
. (45)

As expected, this ratio is � 1, since Nω  1.
Finally, the filling factor ν = N/Nv may also be estimated

in the following way. We use the formula N/Nv = ns(ζ0)/nv ,
where nv is the vortex density, the Feynman relation nv =
�/π , and Eq. (44). Combining these equations we get that
ν ≈ 1.64, which is a very low value. This value is roughly
a factor of two smaller that the one derived analytically in
Ref. [26], which is 3.8. These estimates suggest it is possi-
ble to achieve low filling factors in rapidly rotating quantum
droplets, which is another interesting aspect of this problem.

IV. CONNECTION BETWEEN CENTER-OF-MASS
AND VORTEX EXCITATION

Let us start with the first main question of this study, i.e.,
how the angular momentum is distributed between vortex and
center-of-mass excitation. To answer this question we will rely
on the combination of two approaches. The first one is the
minimization of the energy functional of Eq. (12), using the
damped second-order-in-fictitious-time method [57], which is
suitable in the limit of relatively small droplets. As we have
seen in Ref. [25], for a fixed ω = 0.05, the transition from
pure center-of-mass excitation to vortex excitation takes place
for the critical value of N between 98.6 and 98.7. Up to this
value of N , the droplet carries its angular momentum via
center-of-mass excitation (only) for any value of 
 = L/N �
0. Denoting as 
0 the critical value of L/N above which we
have the transition from center-of-mass excitation to vortex
excitation, we thus find that for any value of N up to ≈98.6,

0 = 0.

In the same study we have found that for N = 100, the
value of 
0 is equal to unity (in which case the droplet al-
ready has a singly quantized vortex state at its center). For
N = 200, the value of 
0 becomes ≈2.6, while for N = 270,

0 ≈ 3.4. Finally, within the present study, we have managed
to extract the value of 
0 for N = 500, which is ≈6.1. For
this value of the angular momentum, which corresponds to
� = ω = 0.05, the droplet exists in a state which carries eight
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FIG. 2. Density (left column) and phase (right column) of the
droplet order parameter for N = 500, ω = 0.05, and (a) L/N = 6.1
and (b) L/N = 6.4. The density is measured in units of �2

0 and the
length in units of x0.

singly quantized vortices, as shown in Fig. 2(a). For higher
values of the angular momentum, e.g., L/N = 6.4, the droplet
turns to center-of-mass excitation of the vortex carrying state,
as shown in Fig. 2(b). We stress that for L/N � 6.1 the dis-
persion relation (i.e., the energy as a function of L) becomes
linear, with a slope equal to ω = 0.05, as we have seen in
Ref. [25]. In each case the transition between the two phases is
continuous, as indicated by the fact that the dispersion relation
has a positive curvature for L/N � 
0.

For even larger values of N this calculation becomes
increasingly difficult. We stress that fixing the angular mo-
mentum (as compared with fixing �) introduces an extra
constraint, which makes the numerical calculation more de-
manding. Thus, in order to evaluate 
0 for higher values of
N , we rely on the Wigner-Seitz approximation, which was
described in Sec. II B. Since within this method we mini-
mize the energy in the rotating frame at fixed �, therefore
� = ∂E (L)/∂L. In other words, for some given � that we
choose, we get the slope of the dispersion relation for a
value of 
, which is precisely 
0. However, we know that
we have the transition to center-of-mass excitation when �

becomes equal to ω. Then, all that remains to be done is to
examine the dependence of 
0 on N .

Actually, from Eqs. (35), (40), and (43) we find that


0 = 1
2ωR2(ζ0) ≈ 0.0152 N, (46)

i.e., there is an approximately linear dependence of 
0 on
N . The number of vortices Nv may also be evaluated using
Feynman’s relation along with Eq. (43),

Nv = nvπR2(ζ0) = ωR2(ζ0) = 2
0 ≈ 0.0304 N. (47)

Figure 3 shows the 
0 values for a “small” droplet (N =
98.6, 98.7, 174, 200, 270 and 500), which result from mini-
mizing the energy functional of Eq. (12) [25]. The rest of
the points (N = 1000, 1500, and 2000) were derived from
the Wigner-Seitz approximation, since it is numerically very

FIG. 3. Critical value of the angular momentum per particle (in
units of h̄) for the transition between pure vortex excitation and
center-of-mass (COM) excitation, as function of N . The dashed
vertical line corresponds to N = 98.6, the critical value of N above
which vortices enter the droplet. Alternatively, one may view this as
the phase diagram which involves pure vortex excitation in the lower
part and center-of-mass excitation (of either the nonrotating state or
a vortex carrying state) in the upper part. The dashed straight line
is the approximate result of Eq. (46), and the solid curve with data
points is the full numerical result.

challenging to go to such values of N . Their 
0 values are
16.2, 23.8 and 31.4, respectively. For 0 � N � 98.6 we see
that 
0 = 0, as for that range of N values the droplet carries
its angular momentum only via center-of-mass excitation. Fol-
lowing that, the curve exhibits another horizontal region, for
98.7 � N � 174, where 
0 = 1. For this range of N values,
the droplet accommodates exactly one singly quantized vortex
before turning to center-of-mass excitation. The curve then
develops a more detailed structure, as the droplet accommo-
dates two, or more, vortices. Finally, for large N values the
curve turns linear. We stress here that the slope of the curve
in that region, as calculated through our numerical results, is
in excellent agreement with the semianalytic value given by
Eq. (46).

V. PROPERTIES OF THE VORTEX LATTICE

In the previous section we focused on the case where
� = ω. Now we turn to the second main question of this
study, namely, the properties of the vortex lattice as �, or as
N are varied. All the results presented below come from the
Wigner-Seitz approximation.

The first question that we examine is the smoothed density
distribution, ns(r) = �2(r), of the droplet. We derive this
from the minimization of the energy functional of Eq. (36) for
two cases. The first one is to fix N to 2000 and vary � from
0.03 up to 0.05, which is the value of ω. In all these cases we
minimize the energy with respect to our variational parameter,
which is ζ . As seen in Fig. 4, there is a gradual transition
of the density to a “flat top” distribution as � increases and
reaches ω. The density distribution for � = ω is very much
like the one of the nonrotating, unconfined droplet, with the
only difference being that the droplet has expanded radially
[see Eq. (43)] and has a lower density [see Eq. (44)].

In the second case we fix � and vary N . Here we choose
� = 0.049 to be very close to ω = 0.05, and we choose the
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FIG. 4. The smoothed density distribution, ns(r) = �2(r), of
a quantum droplet, in solid (blue) curves, for (a) � = 0.035,
(b) � = 0.045, (c) � = 0.049, and (d) � = ω = 0.05. The dotted
(green) curve shows the density of the nonrotating droplet, and the
dashed (red) curve shows the density of the unconfined nonrotating
droplet. In all the plots N = 2000. The density is measured in units
of �2

0 and the length in units of x0.

values N = 2000, 3000, and 4000. Figure 5 shows the result
of this calculation. In this case we observe that both the width
of the droplet as well as its height increase.

FIG. 5. The smoothed density distribution, ns(r) = �2(r), of
a quantum droplet, for (a) N = 2000, (b) N = 3000, and (c)
N = 4000. In all plots � = 0.049. The density is measured in units
of �2

0 and the length in units of x0.

In Fig. 6 we plot the expectation value
√

2〈r2〉, which, for a
flat-top distribution gives the radius of the droplet as function
of �, for fixed N = 2000. As � approaches ω the effective
potential (ω2 − �2)r2/2 softens, and as a result the droplet
expands, reaching a maximum value when � = ω, with a
finite slope as � approaches ω. Beyond this value of � = ω

the droplet undergoes center-of-mass excitation; see Fig. 3. In
Fig. 7 we plot the same quantity,

√
2〈r2〉, as function of N , for

fixed � = 0.049. Again, this is an increasing function of N ,
as expected.

In Figs. 8 and 9 we plot the value of ζ = (πξ 2)/(π
2
cell )

that minimizes the energy. Obviously ζ is the fractional area
of the vortex size over the cell size. In Fig. 8 we plot ζ as
function of � for N = 2000 and � from 0.03 up to 0.05,
which is the value of ω. We observe that ζ (�) is an increasing
function. Finally, Fig. 9 shows ζ as function of N , for a fixed
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FIG. 6. The expectation value
√

2〈r2〉 (in units of x0) as function
of � (in units of ω0), for � = 0.03, 0.035, 0.04, 0.045, 0.049, 0.0495,
0.0499, and 0.05. N = 2000.

value of � = 0.049. Here ζ (N ) decreases with increasing N ,
albeit relatively slowly.

From Eq. (35) we plot in Fig. 10 the angular momentum
per particle L(�)/N as function of �, considering N = 2000.
This is an increasing function, as expected. Finally, in Fig. 11
we present the total density (rather than the smoothed density)
of the droplet order parameter, n(r) = �2(r) = �2(r) · f 2(r),
in a region around the origin, for � = 0.03 and 0.05. We
observe that as � increases, the intervortex spacing 2
cell

decreases, and the fractional area ζ of each vortex core
over the cell increases. Here we have considered the value
N = 2000, but we stress that this picture is representative
of other (large) N values as well, as the intervortex spac-
ing does not depend on N , and ζ depends relatively weakly
on N .

VI. DISCUSSION AND SUMMARY

In this study we considered the problem of a rapidly
rotating quantum droplet, which is confined in a harmonic
potential, in purely two spatial dimensions. The harmonic
potential we consider has two unique properties. The first
one is the fact that in a harmonic potential the center-of-mass
coordinate separates from the relative coordinates. The second
is that as the rotational frequency of the trap approaches the
trap frequency the centrifugal potential cancels exactly the
confining potential.

FIG. 7. The expectation value
√

2〈r2〉 (in units of x0) as function
of N , for N = 1000, 2000, 3000, 4000, and 5000. � = 0.049.

FIG. 8. The fractional area ζ (�) of each vortex size over the cell
size as function of � (in units of ω0), for � = 0.03, 0.035, 0.04,
0.045, 0.049, 0.0495, 0.0499, and 0.05. N = 2000.

In this study we combined two approaches, namely, a full
numerical minimization of the corresponding energy func-
tional, as well as a Wigner-Seitz approximation for the case
where there is a vortex lattice, following Refs. [51–56]. We
assumed that there is a smoothed, slowly varying, density
distribution and, on top of that, a rapidly varying density dis-
tribution due to the presence of the vortices. We also assumed
that each vortex occupies a cylindrical cell, and we treated
the size of the vortex core variationally. Since we considered
this to be spatially independent, we expect that our results
become more accurate when � approaches ω, in which case
the droplet has a flat-top density distribution.

In one of the main results of our study, we managed to de-
velop an equation for the smoothed density distribution. This
equation resembles the corresponding one of the nonrotating
droplet. The approach that we use not only allows us to deal
with the asymptotic limit of a very large vortex lattice, but also
we manage to derive some analytic results, which although not
exact, give insight into the problem.

The fact that the droplet is self-bound makes this problem
very different as compared to the corresponding prob-
lem of a repulsive contact potential. In the problem with
contact interactions—which has been studied extensively in
the past—as � approaches ω, the cloud expands and a vortex
lattice forms. Eventually, the system enters a highly correlated

FIG. 9. The fractional area ζ (N ) of each vortex size over the cell
size as function of N , for N = 1000, 2000, 3000, 4000, and 5000.
� = 0.049.
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FIG. 10. The angular momentum per particle L(�)/N (in units
of h̄) as function of � (in units of ω0), for � = 0.03, 0.035, 0.04,
0.045, 0.049, 0.0495, 0.0499 and 0.05. N = 2000.

regime, where the lattice “melts” and the many-body state
develops correlations beyond the mean-field, product state
[46–50].

In the present problem the nonlinear term is partly at-
tractive and partly repulsive. According to our results, as �

approaches ω there may, or there may not be a vortex lat-
tice, depending on the droplet atom number and the angular
momentum, as shown in Fig. 3. For a “small” droplet there
is a transition to center-of-mass excitation, with no, or few,
vortices [25]. For a “large” droplet we have the formation of
a vortex lattice, which, however, never “melts,” even when �

becomes equal to ω. Nothing really important happens in the
droplet in this case, apart from the fact that the droplet has
expanded and the density has dropped (compared with the
nonrotating droplet), due to the presence of the vortices, as
seen in Figs. 4–10. Regarding the area of each vortex core,
compared with the size of each cell, this also increases with
increasing �. On the other hand, for fixed � we have seen a
slow decrease of this ratio, as N increases.

In addition, when � becomes equal to ω, the confining
potential is identically canceled by the centrifugal potential.
In this case and in the Thomas-Fermi limit of a large droplet
the physics is determined solely by the attractive term, which
makes it self-bound (this is the main difference with the case
of repulsive contact interactions). In this respect, there is
a universal behavior of this problem, for � = ω and for a
“large” droplet. More specifically, the droplet has a flat-top
shape (apart from the nodes in the density, due to the presence
of the vortices).

FIG. 11. The density of the droplet order parameter around the
origin for N = 2000, and � = 0.03 (left), and � = 0.05 (right). The
density is measured in units of �2

0 and the length in units of x0.

Finally, when � exceeds ω—even by an infinitesimal
amount—the energy of the droplet is not bounded any more.
The same happens also for contact interactions. However, a
droplet always turns to center-of-mass excitation, escaping
to infinity, preserving its shape. This is due to the fact that
the droplet is self-bound. In the problem of contact repulsive
interactions, on the other hand, the atoms fly apart.

For the case of a rapidly rotating scalar condensate, be-
fore the system enters the correlated regime, it enters the
“mean-field lowest-Landau-level” regime [58]. There, the gas
is still described by a product, mean-field, order parameter, but
the system resides in the lowest-Landau-level orbitals. This
regime occurs before the emergence of a strongly correlated
state. There the vortex core size becomes comparable to vor-
tex spacing, and there is also a saturation of the ratio between
these two length scales.

An interesting question is whether as � → ω−, a (rapidly
rotating) quantum droplet enters the mean-field lowest-
Landau-level limit, also. While we have not examined this
question, Figs. 8 and 11 (for � = 0.05) probably indicate that
we have a precursor of the lowest-Landau-level state. One
may wonder whether the center-of-mass excitation prohibits
this; however, the droplet turns into center-of-mass excitation
for � > ω. We should also mention that Ref. [27], demon-
strated that the lowest-Landau-level limit is accessible, but in
this study it is not only � that was varied.

Finally, the very low estimates for the filling factor that we
have derived from our approach is another interesting aspect
of the problem of rapidly rotating quantum droplets, due to its
connection to a possible emergence of the strongly correlated
state, as pointed out in Ref. [26].

As a final remark, we stress that the two approaches that
we have followed, namely, minimization of the energy fixing
the angular momentum or fixing the angular velocity of the
trap, are intimately connected. If the angular momentum is
fixed, one may easily derive the results for fixed �, but the
reverse is not possible (at least in a direct way). Furthermore,
the two approaches correspond to different experimental situ-
ations. More specifically, if the angular momentum is fixed,
one would be able to observe the vortex-carrying droplet
executing center-of-mass motion, without escaping to infinity,
and the reason is the constraint of a fixed angular momentum.
On the other hand, if one works with a fixed �, as soon as
� exceeds ω—even by an infinitesimal amount—the vortex-
carrying droplet would escape to infinity. Consequently, this
would never be a stationary state (in the rotating frame), and
the only chance to observe it experimentally would corre-
spond to some “transient” state.

From the above discussion it is clear that there is a whole
collection of results which are associated with the rotational
response of a quantum droplet. It would be interesting to
confirm these results experimentally in this new superfluid
system.
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